Abstract
Introduction: In addition to existing approaches for the assessment of accidental or intentional contamination of water resource, the remote diagnosis has been developed to access quickly of relevant information.
Methods: Its implementation requires, on site, the use of a measurement and communication system enabling remote exchanges with an expert.
Results: This latter analyses the results of measures and establishes a first diagnosis about the presence of contamination and its nature, if possible. For this it has non-parametric data (including UV-visible spectra and fluorimetry) in addition to classical physico-chemical measurements (pH, conductivity, turbidity, temperature, dissolved O2, etc.).
Conclusion: Based on the results and required information, the expert can suggest conducting on site sampling and additional measures to better appreciate the temporal evolution of the contaminated water.
References
Cahoon LB, Cutting RH. Forensic water quality investigations: identifying pollution sources and polluters. In: Ahuja S (ed.) Handbook of Water Purity and Quality. Amesterdam, Elsevier; 2009. pp. 131-45.
Hasan J. technologies and techniques for early warning systems to monitor and evaluate drinking water quality: a state of the art review.
U.S. Environmental Protection Agency. EPA/600/R-05/156, 2005.
Storey MV, Van der Gaag B, Burns BP. Advances in on-line drinking water quality monitoring and early warning systems. Water Research 2011; 45:741-7.
Kroll D. Monitoring for Terrorist-Related Contamination. In: Ahuja S (ed.) Handbook of Water Purity and Quality. Amsterdam, Elsevier; 2009. pp. 343-77.
Gonzalez C, Junqua G, Roig B. Nouvelles méthodes de mesures de la qualité de l’eau. TSM 2008; 2:123-9.
Circulaire française n° 86-170 du 14 Mai 1986 relative à la constitution de Cellules Mobiles d’Intervention Chimique (CMIC).
Bornert G. Gestion des approvisionnements en eaux en situation d’exception. TSM 2011; 5:67-82.
CBRN protection systems for defense forces and population. http://www.nexter-group.fr/index.php?option=com_content&view=article &id=132&Itemid=270index.php. Dernier accès le 25 décembre 2014.
Thomas O, Baures E, Pouet MF. UV spectrophotometry as a non-parametric measurement of water and wastewater quality variability. WQRJC 2005; 40:51-8.
Spinelli S, Gonzalez C, Thomas O. UV spectra library. In: Thomas O, Burgess C (eds.) UV-visible spectrophotometry of water and wastewater. Amsterdam, Elsevier; 2007. pp. 267-356.
Hancher CW, Thacker LH, Phares EF. A fiberoptic retroflective turbidity-meter for continuously monitoring cell concentration during fermentation. Biotechnol Bioeng. 1974; 15:475-84.
Boni M, Orlandini P, Karom A, Koehle O, Bornert G. Contamination intentionnelle des eaux par des toxines. Médecine et armées 2010; 38:221-8.